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Constant-time Monocular Self-Calibration
Nima Keivan and Gabe Sibley

Abstract— This paper describes an extensible framework
for real-time self-calibration of cameras in the simultane-
ous mapping and localization (SLAM) setting. The system is
demonstrated to calibrate both pinhole and fish-eye camera
models from unknown initial parameters while seamlessly
solving the online SLAM problem in real-time. Self-calibration
is performed by tracking image features, and requires no
predetermined calibration target. By automatically identifying
and using only those portions of the sequence that contain useful
information for the purpose of calibration the system achieves
accurate results incrementally and in constant-time vs. the num-
ber of images. Furthermore, no special initialization movements
are necessary. Parameters estimated by the framework are
shown to closely match the batch solution as well as offline
calibration values, but are computed live in constant-time. By
not rolling information into an assumed prior distribution, the
system avoids inconsistencies caused by early linearization – a
problem that limits filtering techniques. The system is evaluated
with experimental data and shown to be accurate vs. both the
offline and batch calibration estimates.

I. INTRODUCTION

For both mobile and service robots, images obtained
from cameras are one of the primary sensor modalities
used in localization, mapping, object detection and planning.
However an accurate calibration of the camera is required
in order to utilize the images for metric estimation. While
offline calibration provides an initial estimate to the cali-
bration parameters, it is not always feasible and convenient
to calibrate cameras using pre-fabricated calibration targets.
Calibration parameters could also change during storage
or between uses, requiring recalibration. A true "power
on and go" solution would both enable a simple camera
calibration solution for mobile robots, as well as removing a
major barrier of entry for students and hobbyists wishing to
incorporate metric vision in their robotic projects. Camera
self-calibration in the SLAM framework is the process of
estimating the intrinsic parameters of a camera considering
solely a sequence of images, without any assumptions as to
the content of the scene, whilst simultaneously estimating
the map and camera location. The calibration parameters
typically consist of the focal length, principal point and
several distortion parameters. An online implementation of
self-calibration would recursively estimate these parameters
as new images are obtained, attempting to provide the best
estimates considering all available information. Traditionally,
calibration is performed offline using images of a known
calibration target, or as part of a large offline batch op-
timization. Once calibrated, the parameters are fixed for
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the lifetime of the robot. This approach presents many
drawbacks, such as the vulnerability to any changes in
the camera parameters, the inconvenience of producing and
imaging a known calibration target, along with the bespoke
software written explicitly to detect it. Apart from continually
improving the calibration parameter estimates as new images
become available, online self-calibration also paves the way
for robust change detection and estimation, dealing with
situations where the physical calibration parameters inten-
tionally or unintentionally change. For mobile robotics, easy
self-calibration and hence "power on and go" functionality
could for instance allow naive users, such as young students,
to experiment with visual simultaneous localization and
mapping algorithms without first becoming experts in camera
calibration.

Due to these advantages, online self-calibration for vi-
sual and visual-inertial systems has been of interest to
research recently [10], [2], [7]. However, the estimation
of calibration parameters in constant-time considering all
present and previous data presents challenges which have
so far prevented online self-calibration from becoming com-
monplace. Filtering methods have been the main approach
in cases where the estimation of parameters requires pro-
cessing all present and past information. The estimation
is made constant-time by rolling information from past
image measurements into a parametric distribution, or prior.
Ideally, the prior would incorporate the influence of the now-
absent parameters and measurements on the smaller, active
set of parameters, enabling a constant-time estimation of
these active parameters that considers the entire trajectory
up to the present. Unfortunately, filtering methods present
some drawbacks that are especially critical for the case of
self-calibration. Due to the nonlinearity of camera models,
linearized parametric distributions often cannot represent
past measurements without introducing inconsistencies in
the estimation. In the case of SLAM, it is well known
that filtering methods can be inconsistent. Recent work has
focused on how to tackle these inconsistencies [8], [5], as
their presence can cause overconfidence in the estimated
parameters, an especially undesirable situation in the case
of self-calibration. Even when complex parametric models
are used, early linearization used to obtain the parametric
distributions can lead to inaccuracies in the prior which
lead to inconsistency. Furthermore, updates to the calibration
parameters induce large and often highly non-linear changes
to the parameter estimates, further exasperating the effects
of early linearization.

These issues motivate the work presented in this paper,
which involves estimating the calibration parameters online,
by considering only the best segments of the trajectory,
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Fig. 1. Graphical model representing the self-calibrating SLAM problem.
Edges between the calibration parameters xc and all other parameters make
the problem difficult to factor.

without a prior distribution. The motivation behind the work
is the realization that not all segments in a SLAM sequence
are equal as far as their information content regarding the
calibration parameters. This can be easily conceptualized due
to the existence of degenerate configurations which provide
no information [14]. If the best segments in the trajectory
are considered, a constant time estimate for the calibration
parameters can still be obtained. Moreover, due to the lack
of a prior, inconsistencies are caused only by modeling and
measurement uncertainty errors, rather than a product of the
framework, easing their mitigation. Due to the self-selection
of these segments, special attention is paid to ensuring
unbiased estimates, as not all measurements are considered.
While the proposed system is only concerned with the
calibration of camera intrinsics, it can easily be extended
to camera extrinsics and multi-sensor self-calibration.

II. METHODOLOGY

The self-calibrating SLAM problem can be represented
as a graphical model as per Fig. 1. It is observed that the
calibration parameters xc are linked to all pose and landmark
parameters through measurements, making a direct solution
infeasible in an online setting. However, the amount of
information obtained about the calibration parameters varies
from each measurement. Depending on the motion of the
camera, and the structure of the scene, measurements may
add little to the observability of the calibration parameters.
In certain degenerate cases of camera motion, measurements
may indeed provide no information.

To obtain a constant time estimate for the calibration
parameters, the best segments of the trajectory are stored
in a priority queue as follows: When a new image is
received, the set of measurements obtained from it and
the additional measurements obtained from a fixed-length
of previous images are used to estimate the camera pose
and landmark parameters in the window, as well as the
camera calibration parameters. This window is then scored
based on the uncertainty of the calibration parameters, with
a low uncertainty signifying a high score. This score is then
compared against each window already in the priority queue.
If the score is better than the worst score in the priority
queue, the worst window in the priority queue is replaced
with the new candidate window. Once such an update takes
place, all the windows in the priority queue are used to
jointly re-estimate the camera calibration parameters. Since
the maximum number of windows in the priority queue
is fixed and pre-determined, the calibration parameters are
estimated in constant-time in the event of a priority update.

A. Optimization Formulation

The calibration parameters are estimated alongside the
camera pose and landmark parameters in a non-linear max-
imum likelihood estimation framework. This framework is
also used to extract the uncertainty of the calibration param-
eters. Measurements are formed by tracking salient points
of the image across multiple frames. Each measurement is
modeled as a projection of a landmark parameterized in
inverse depth [11] into an image, to form a minimal landmark
representation. Note: parameterizing the landmark in this
way is consistent with the maximum likelihood estimate, as
measurements are formed by tracking an initial reference
patch, which remains along the initial reference ray. The
projected pixel coordinate p2 of a landmark in the current
frame is formulated via the transfer function W as

p2 =W (p1,T21, ρ)

= P
(
π3d

(
T−1

wc2Twc1

[
P−1 (p1,xc) ; ρ

])
,xc

)
(1)

The transferred pixel coordinate is obtained by first back-
projecting a reference pixel coordinate obtained via harris
corner detection, p1, given the back-projection function P−1,
to obtain the reference ray. This ray is then homogenized
given the inverse depth parameter ρ. The resulting 4d homo-
geneous vector is transformed into the current camera refer-
ence frame by the homogeneous transformation T−1

wc2Twc1

where Twcn ∈ SE3 is the 4× 4 transformation matrix from
coordinates of frame n to world coordinates. The result is de-
homogenized by π3d and projected into the current image by
the projection function P . More specifically, P−1 (p1,xc) ∈
R3 is the 2d to 3d camera back-projection function which
outputs a unit ray given the reference 2d pixel coordinates
p1 and the camera calibration parameters xc, P (u,xc) ∈ R2

is the 3d to 2d projection function which outputs a 2d pixel
coordinate given a de-homogenized 3d point and π3d () is
the 3d de-homogenization function defined as:

π3d

([
x y z w

]T)
=
[
x/w y/w z/w

]T
As an example, in the case of the pinhole camera model,

the calibration parameters xc =
[
fx fy cx cy

]
are

comprised of the focal length and principal point parame-
ters in x and y, and the projection function P is defined
as P (u,xc) = π2d (K (xc)u) where K (xc) forms the
camera projection matrix given the intrinsic parameters,
u ∈ R3 is a 3d point location, and π2d is the 2d de-
homogenization function defined as π2d

([
x y z

]T)
=[

x/z y/z
]T

. Similarly, the back projection function P−1

for a pinhole camera is defined as u1 = P−1 (p1,xc) =

K−1 (xc)

[
p1

1

]
.

Given the aforementioned residual model, the state space
vector of the optimization is defined as

x =
[
{xwi : i = 1, . . . , n} {ρj : j = 1, . . . ,m} xc

]T
where xwi ∈ se3 is the 6d tangent space representation of
the update to transformation Twi, ρj is the inverse depth
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parameter for landmark j, and xc is the vector of calibration
parameters. Given the projection in (1), the residual for
the measurement of the jth landmark, with reference (first
measurement) frame k, in the ith frame is formulated as

rij = zij −W
(
pj ,T

−1
wciTwck , ρj

)
(2)

where zij ∈ R2 is the pixel coordinate measurement of the
jth landmark in the ith frame, Twck is the transformation
from the reference frame coordinates for landmark j to world
coordinates, Twck is the transformation from the coordinates
of the measurement frame i to world coordinates, pj is
the reference pixel coordinate for landmark j, and ρj is
the inverse depth parameter for landmark j. The total error
minimized in the optimization is formulated as

e =

n∑
i=1

m∑
j=1

‖rij‖2Σij
(3)

where the notation ‖x‖2Σij
signifies the mahalanobis distance

given the measurement uncertainty Σij ∈ R2×2.
The problem is then solved by iteratively updating the

state vector x in a dog-leg trust region minimization
framework[12]. The dog-leg update consists of a mixture of
the Gauss-Newton and steepest descent solutions denoted as
δGN and δSD respectively which are formulated as

δGN =
(
JTJ

)−1
g δSD = gTg

gTJTJg
g = ‖g‖

‖Jg‖g

where g = JT r, J = W
1
2
∂r
∂x is the jacobian matrix of

the residual vector with respect to the state vector, r =
[r1 . . . rn]

T is the vector of residuals formed as per (2), and
W is the residual weight matrix. The weight matrix W is
a combination of residual weights given by the inverse of
the measurement covariance Σij from (3), as well as a re-
weighted huber norm for outlier rejection. Note that the jaco-
bian has been represented in standard form, which includes
the square root of the weight matrix W. This is necessary
for the correct calculation of the steepest descent update
δSD. The Gauss-Newton delta is obtained by solving for
δSD using the cholesky factorization of the reduced-camera
matrix, obtained by the Schur complement trick[13][1]. The
optimization is iterated until either the error or parameter
change is smaller than a specific threshold.

Since the MLE framework presented above does not
make use of a prior, the system will exhibit a number of
unconstrained degrees of freedom, manifesting as null spaces
in the system hessian. The monocular SLAM problem in
particular exhibits 7 null spaces. The first 6 null spaces
are due to the unobservability of the global translation and
rotation, and are handled by removing the parameters for the
first pose (xw0) from the optimization. The seventh nullspace
is due to scale unobservability and is handled by removing a
single inverse depth parameter ρj from the optimization. The
landmark j for which the inverse depth parameter is removed
is chosen to have the largest number of measurements, and
therefore be well estimated, to ensure minimal impact on the
optimization.
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Fig. 2. One dimensional example of the priority queue update operation.
Segment c in the priority queue (denoted by the dashed line) has the highest
entropy and will be replaced with the candidate segment which has a lower
entropy.

B. Priority Queue

The proposed method requires each candidate segment of
the trajectory to be scored depending on the observability
of the camera parameters during the segment. This enables
a comparison between it and the segments already in the
priority queue. The proposed score is based on the entropy
of the distribution of the calibration parameters for a given
segment, with the ultimate goal of obtaining the segments
which have the least uncertainty about their individual esti-
mates for the calibration parameters. Given the assumption of
gaussian distributions, a posterior can be computed over the
calibration parameters by inverting the Fisher information
matrix I and extracting the submatrix associated with the
parameters xc:

Σxc
= I [ixc

, ixc
] =

(
JTJ

)−1
[ixc

, ixc
] (4)

where the notation [x,y] denotes a submatrix extracted
from rows specified in the vector x and columns specified
in the vector y, J is the jacobian matrix as per section II-A,
and ixc

∈ Rm is a vector containing the indices of the m
camera calibration parameters in the state vector x. Since the
calibration parameters are not of the same scale, an entropy
calculated based on ΣXc will be skewed towards variables
with larger variances. In order to correct for this skew, we
normalize the posterior covariance matrix

Σ′ij =
1

√
σi
√
σj

Σij

where σi and σj are the expected true variances of the ith
and jth camera calibration parameters respectively. These
quantities should encode the underlying differences between
the variances of the parameters given their units and range,
and are obtained from the posterior Σxc obtained in a batch
solution over a large sample trajectory. For the experiments
discussed in this paper, a sample trajectory of 2000 frames
was used. The quantity Σ′Xc

is similar to the posterior cor-
relation matrix, but with variances from a different, sample
trajectory used as the normalizing factors. Since the jacobian
matrix J in (4) contains terms for all poses, landmarks, and
the calibration parameters, the inverse can be very costly.
Therefore, in order to obtain the marginal distribution, we
use the method outlined in[4]:

IΣ = I → IΣi = ei (5)

where the equality in (5) is due to the duality between the
information matrix I and the covariance Σ, and consequently
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the ith column of the covariance Σi can form an equality
with the ith unit vector. Equation (5) can be solved using
the cholesky factorization of I, requiring a forward/backward
substitution per column of the covariance. As the calibration
parameters xc are at the end of the state vector, the number
of substitutions per covariance column can be limited to the
dimensionality of xc[4]. Given the normalized covariance of
the calibration parameters, the entropy of the distribution is
then given by h = 1

2 ln
∣∣2πeΣ′xc

∣∣ where the bars denote the
matrix determinant. The priority queue update condition is
therefore

hc < αmax {hi : i = 1, . . . , n}

where hc is the entropy of the candidate segment,
{hi : i = 1, . . . , n} is the set of the entropies of the segments
already in the priority queue, and α = 0.95 is a heuristic
to ensure at least a 5% reduction of entropy for an update
operation. If this condition is met, the candidate segment
is replaced with the segment with the largest entropy. If
a candidate segment overlaps with a segment already in
the priority queue, the update condition is only checked
against the overlapping segment. If the condition is met, the
overlapping segments are swapped. This is to ensure that no
overlapping segments are present in the priority queue, as the
optimization would then double-count the overlapping mea-
surements. Once a swap takes place, the optimization is run
again to minimize the error in (3) jointly over all segments of
the priority queue. The resulting calibration parameters are
then used to continue the SLAM estimation. The distribution
of the calibration parameters of the priority queue can then
be extracted from the converged hessian of the problem. It
must be noted that the nullspace regularization discussed in
section II-A must be applied to each segment in the joint
priority queue optimization, as the segments do not overlap
and therefore each exhibit the aforementioned 7 nullspaces.

It is important that the priority queue update condition not
be biased in any way, as rather than solely optimizing over
the calibration parameters, the measurements over which the
optimization takes place are actively being selected. Any
selection criteria which attempts to reduce the entropy of
the priority queue distribution, or increase the information
gained as a result of the update, risks biasing the solution
towards the current estimates for xc, given the assumptions
of gaussian distribution. As an example, the true distribu-
tion for a particular parameter may be multi-modal, with
measurements first observing one mode, and then the other.
In a batch solution with a gaussian distribution assumption,
the observation of the second mode would in fact increase
the entropy of the distribution over the parameter, as the
gaussian assumption is incorrect, and cannot explain the
underlying distribution. It is important that this behavior also
be replicated in the priority queue solution. The proposed
scoring solution is therefore solely based on the entropy of
the posterior distribution over the segment itself, not how it
relates to the posterior distribution of the priority queue.

xi
c

candidate window

sliding window

conditioning 

poses

Fig. 3. The sliding and candidate windows, on a sample segment of
the trajectory. The sliding window is conditioned on poses outside the
window based on co-visible landmarks, whereas the candidate window is
considered separately. xi

c is the calibration parameter vector estimated by
considering only the measurements in the ith candidate window. The sliding,
and candidate windows can be processed in parallel.

C. Online Self-Calibration

The online implementation of the proposed method con-
sists of two windowed optimizations. The first is a condition-
ing sliding window[9] estimator, which does not optimize the
calibration parameters. It is tasked with estimating poses and
landmarks within an active window, while being conditioned
on past poses. The secondary window estimates poses,
landmarks as well as the calibration parameters, and is used
to compute the marginals Σxc

. This optimization does not
condition on information outside the window. The marginals
are then used in the update condition of the priority queue.
These two estimators are separated since the observability of
the calibration parameters is not guaranteed over the candi-
date window. Poorly observed calibration parameters could
then affect the quality of the pose and landmark estimates,
affecting the reliability of navigation and localization.

If an update to the priority queue is carried out, an
optimization over the entire queue is performed resulting
in new estimates for the calibration parameters. These new
estimates are then fed back to the sliding window estimator.
Special attention has been paid to the startup sequence
where zero prior information is assumed over the calibration
parameters. To handle this case, a batch optimization is run
which includes the calibration parameters, until the entropy
of the posterior over the calibration parameters falls below a
preset heuristic. This batch optimization is run in conjunction
with the priority queue update procedure. Once the batch
entropy is lower than a specific heuristic, further estimation
is handled by the windowed optimization shown in Fig. 3,
and the priority queue is used to further update thet estimates
of the calibration parameters.

A keyframing system [9] is implemented in order to in-
crease performance, and the information content of each pose
regarding the calibration parameters. As each new image is
received, a number of heuristics are used to decide whether
or not a keyframe should be created. These heuristics are
formed on the distance and angle between the current frame
and the previous keyframe, as well as on the percentage
of landmarks successfully tracked. The result is that no
new keyframes are placed if images from a semi-stationary
camera are received. A secondary result is that keyframes
are only placed when there is sufficient excitation of the
camera to trigger one of the heuristics. Keyframing does not
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Fig. 4. Results of the GW loop dataset spanning 5300 frames and 1200
keyframes, tracking 128 features on average. The priority queue consisted of
10 segments each with 10 keyframes. Solid and dashed red lines represent
3 sigma bounds for the priority queue and batch solutions respectively.
fx, fy , cx, and cy are the x and y focal length and principal point values
respectively, and w is the FOV model distortion parameter. det(Σ) plots the
determinant of the calibration parameter covariance Σ′

ij . Solid black lines
represent offline calibration values. The priority queue and batch statistics
are only calculated when the update condition is met and a swap takes place
in the priority queue.

completely guarantee observability of the camera parameters
due to the existence of degenerate motions which still trigger
new keyframes. However, a number of cases of degenerate
motion will be successfully avoided, such as the stationary
camera case.

III. RESULTS

The proposed system was validated with real data to eval-
uate its performance and convergence characteristics. In all
cases, 2d feature tracks were obtained from the images and
used as measurements in the aforementioned optimizations.
The experimental datasets were captured with a wide-angle
lens and calibrated using the FOV model [3]. The calibration
parameters were initialized as follows: the x and y focal
lengths were set equally to 90◦, the x and y principal point
parameters were set to half the image width and height
respectively, and the distortion parameter w of the FOV
model was set to represent an ideal fisheye lens (w = 1.0).
As discussed in section II-C, an initial batch optimization
comprising all poses, landmarks and calibration parameters
is run until its entropy h is below a certain threshold, at
which point the calibration parameter estimation is handed
over to the priority queue. This batch estimation stage lasts
for approximately 10 keyframes. A large convergence basin
was observed for both the focal length and the distortion
parameter w. Focal lengths corresponding to FOVs between
30◦ and 110◦ combined with values of w between 0.5
and 1.0 were observed to converge, while outside values
generally diverged due to a combination of tracking and
batch estimation failure.

Fig. 4 shows the results of the system running on the GW
loop dataset. The dataset was captured around the GWU
campus with a wide angle lens camera. It can be seen
after the first 10 keyframes in which the batch solution
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Fig. 5. Focal length and covariance determinant for an indoor corridor se-
quence. The capture, sequence and priority queue were performed identical
to the results in Fig. 4.

is active, the priority queue successfully tracks the mean
calibration parameter values obtained by the batch solution,
albeit with a higher uncertainty. This is expected for the
priority queue, as it is computed using a much smaller subset
of the available measurements. The key aspect of the system
is that is able to include sections which significantly increase
the observability of the parameters, as can be seen in the
determinant plot in Fig. 4, which plots the determinant of
the normalized calibration parameter covariance matrix Σ′ij .
At keyframes 300 and 600, the batch solution determinant
dips, signaling a reduction in the total uncertainty of the
calibration parameters. The priority queue solution is able
to mirror these reductions in uncertainty, by swapping in
the relevant segments. This is seen more prominently in the
indoor dataset results shown in Fig. 5, where at keyframe
200 a large reduction in uncertainty is visible in both the
batch and priority queue solutions.

The effects of the size of the priority queue are demon-
strated in Fig. 7, where it is evident that priority queues
which consist of more segments tend to better match the
batch solution. However, even when using just 5 segments
of 10 keyframes each, accurate estimations are observed
compared to both the batch and offline estimations. As
expected, using a larger number of segments also results in
a lower uncertainty for the priority queue estimate. Higher
volatility is also observed when fewer segments are present
in the priority queue as swapping any individual segment can
have a higher impact on the overall priority queue solution.

Discrepancies are observed between some estimates from
the priority queue and the offline calibration values (such as
w in Fig. 4). This discrepancy can be caused by a number of
factors, such as the quality of the offline calibration, feature
tracking, the given uncertainty of the visual measurements,
and lack of observability over the parameters. However, it is
observed that in all cases both the batch and priority queue
solution deviate together, and the priority queue closely
matches the batch solution. A particular failure case for
the system is if each new image adds an equal amount of
information to the parameters. In this case, no segment will
ever be swapped in the priority queue, as all segments have
equal score. However it has been observed that with real and
synthetic data, this is an unrealistic case. The determinant
based scoring system can also exhibit a failure case, if the
uncertainty along a single parameter is exceptionally small
compared to the rest due to observability issues. This could
artificially inflate the score of a segment, even though it adds
little information to most other parameters. It has also been
observed that with real and synthetic data that this is not the
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general case, however depending on the particular camera
motion it could transpire, and may warrant a more discerning
scoring system.

It must be noted that although the calibration parameters
are re-estimated as the priority queue is updated, the past
portions of the trajectory are not. This introduces error in
the global camera pose estimate, while local estimates remain
optimal. Fig. 6 shows the estimated camera poses for pre-
calibrated and self-calibrating runs for a sample 200m trajec-
tory with a fixed window size of 10 keyframes. It can be seen
that as expected, due to scale ambiguity, the loop estimate
does not close correctly. However it is also observed that
without any specific measure to address global optimality,
the two solutions remain close, with a mean error of 1.76%
of the distance traveled between them. This signifies that
the calibration is estimated accurately and quickly enough
to ensure estimation close to the pre-calibrated trajectory.
If explicit global optimality is desired, a scheme such as
Asynchronous Adaptive Conditioning [6] can be used to
match the optimal global solution adaptively in constant-
time. A single-threaded, synchronous implementation of the
proposed method runs at an average of 27fps over the course
of the 200m trajectory in Fig. 6 on a 2.6Ghz Intel i7. An
asynchronous implementation would significantly improve
this as the sliding window estimation would not be halted
by calibration related estimation operations.

IV. CONCLUSIONS AND FUTURE WORK

A framework has been presented which enables live and
constant-time self-calibration in a SLAM setting. The per-
formance of the system has been experimentally validated,
where it has been shown to perform successful SLAM
estimation with no initial information about the parameters
of the given camera model. The system runs in real-time and

is able to closely match the batch calibration solution for the
trajectory. Furthermore, as no parametric prior is assumed, no
inconsistencies are introduced as a result of early marginal-
ization. Particular attention has been paid to select an update
condition which does not artificially bias the priority queue
solution towards current estimates. The system automatically
identifies measurement sequences that are useful for calibra-
tion and saves these sequences in a priority queue. Results
show that the mean of the priority queue tracks that of
the batch solution, although the uncertainty of the priority
queue estimates will be understandably higher than that of
the batch solution. For future work, the proposed framework
presents an ideal platform for change-detection wherein a
system reacts to intentional or unintentional changes to the
physical calibration parameters. The inclusion of stereo and
visual-inertial extrinsics calibration is straightforward given
the framework, and would greatly increase the utility of
the system. A number of potential failure cases outlined in
section III also warrant further development of the priority
queue update condition.
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