
Online SLAM with Any-time Self-calibration
and Automatic Change Detection

Nima Keivan and Gabe Sibley*

Abstract— A framework for online simultaneous localization,
mapping and self-calibration is presented which can detect
and handle significant change in the calibration parameters.
Estimates are computed in constant-time by factoring the prob-
lem and focusing on segments of the trajectory that are most
informative for the purposes of calibration. A novel technique
is presented to detect the probability that a significant change
is present in the calibration parameters. The system is then
able to re-calibrate. Maximum likelihood trajectory and map
estimates are computed using an asynchronous and adaptive
optimization. The system requires no prior information and
is able to initialize without any special motions or routines,
or in the case where observability over calibration parameters
is delayed. The system is experimentally validated to calibrate
camera intrinsic parameters for a nonlinear camera model on a
monocular dataset featuring a significant zoom event partway
through, and achieves high accuracy despite unknown initial
calibration parameters. Self-calibration and re-calibration pa-
rameters are shown to closely match estimates computed using
a calibration target. The accuracy of the system is demonstrated
with SLAM results that achieve sub-1% distance-travel error
even in the presence of significant re-calibration events.

I. INTRODUCTION

Camera self-calibration is the inference of the intrinsic
parameters of a camera without the explicit usage of a known
calibration target. The motivation behind self-calibration in
robotics is two-fold: it facilitates the use of computer vision
for localization, mapping or scene understanding without
requiring arduous calibration procedures, and also in the
case of long-term autonomy, robustness is achieved against
accidental changes in the calibration parameters. For the
first case, a self-calibration methodology which continually
estimates a single set of calibration parameters (such as
camera intrinsics) will suffice. However, in order to deal
with changes in the calibration parameters, the approach
must facilitate the their re-estimation and detect the onset
of the change event. Furthermore, it is desired to include
other parameters such as extrinsics between different sensor
modalities, time-delays or multiple cameras. For such a
method to be useful in the case of long term autonomy
however, it must be compatible with current developments
in localization and mapping, as well as run in constant time
to enable timely re-calibration in case of a change event.

With this motivation in mind, an approach is presented
which enables the continuous estimation of camera intrinsics
for a monocular setup in constant-time, while also simulta-
neously estimating the maximum likelihood camera and map
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Fig. 1. Online self-calibration during a zoom event in a 2̃00m sequence.
The left image was captured just before the zoom event. The center image
was captured during the zoom, where focus is temporarily lost, causing a
total loss of feature tracks. The right image shows an image captured just
after the zoom. This event is automatically discovered and new accurate
camera intrinsics are re-estimated online in real-time.

parameters. The approach is based on a probabilistic method
to detect when significant excitation of the calibration pa-
rameters is present in the motion to provide observability
for estimation. It is able to deal with degenerate motions
and non-linearities introduced due to unknown calibration
parameters, which obviates the need for special initializa-
tion routines and motions. Probabilistic change detection
indicates when the system should re-estimate parameters.
Specific attention is paid to ensure past poses and landmarks
are well estimated, even in the case of delayed observability
of the calibration parameters. The approach is not exclusive
to camera intrinsics and can be extended easily to estimate
and detect changes in other calibration parameters, such as
camera to IMU extrinsics, and time offsets. To the authors’
knowledge, this is the first proposed solution to incorporate
change detection for the estimation and re-estimation of
calibration parameters in the SLAM setting.

II. RELATED WORK

The problem of self-calibration with varying camera in-
trinsics has received much attention in the literature in part
due to the benefits outlined in section I. [21] introduced a
method to calibrate the varying focal length of a pinhole
camera model in batch across images used for 3D reconstruc-
tion with all other intrinsic parameters known. [5] presented
a method based on bundle adjustment which optimized
the focal length and principal point location parameters at
each image location for a batch optimization over multiple
images. Expanding upon this, [20] introduced a method to
detect good portions of the trajectory for self-calibration.
Both papers look at self-calibration in the batch setting. [1]
presented a method which using the infinite homography
constraint, estimates the focal length and principal point
for a camera which only rotates, but does not translate.
The rotation parameters along with the camera intrinsics are
solved in batch using a nonlinear optimizer. [24] introduced
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a plane-based method for calibrating pinhole camera models
in the batch setting. The principal point and focal lengths
are estimated for each camera. [13] introduced a method
for self-calibration of pinhole cameras using the SVD of the
fundamental matrix between two views to derive constraints.
These constraints are then solved in a nonlinear batch setting
to obtain the focal length and principal point parameters
of every camera. [16] presented a method to calibrate the
varying intrinsics of a pinhole camera in a batch setting,
given the rotation of the camera was known. A solution was
also offered to align the rotation sensor and camera data in
time.

More recently, simultaneous solutions to the SLAM and
self-calibration problem have been proposed, however to the
author’s best knowledge, all proposed online solutions as-
sume constant calibration parameters. [2] proposed a method
to recursively estimate camera and landmark 3D parameters
as well as the intrinsic parameters of a nonlinear camera
model in an online framework. To deal with the large non-
linearities introduced by the unknown calibration parameters,
a Sum of Gaussians (SOG) filter is used in lieu of an EKF.
[12] presented a method based on the MSCKF [18] filter
which also calibrates the IMU to camera extrinsics. [14]
introduced an EKF based method to estimate the calibration
between an omnidirectional camera and robot odometry.
[10] proposed a filtering solution based on the MSCEKF
to estimate both the camera pose and also intrinsics and
extrinsics for a non-linear camera model with rolling shutter
and a commercial grade IMU in an online framework.

III. METHODOLOGY

The proposed method aims to continuously estimate the
calibration parameters in constant-time, while also detecting
the onset of a change event brought forth by perturbations
to the sensors. Simultaneously, the maximum likelihood
estimates of the camera pose and map parameters are desired.
The required functionality can be composed as three sub-
components: Constant Time Self-Calibration is required in
order to recursively estimate the maximum likelihood cal-
ibration parameters at any point in the trajectory, Change
Detection signals a high probability that the calibration has
been perturbed during a change event, and Adaptive SLAM
estimation is used to ensure maximum likelihood past and
current camera and map parameters are estimated.

A. Constant Time Self-Calibration

To recursively estimate the calibration parameters in
constant-time, the approach described in [7] used. In order to
aid the exposition of the overall self-calibration methodology,
a brief summary of the method is presented here. The
approach aims to obtain maximum likelihood values for the
calibration parameters by selecting only the segments of the
trajectory which provide the most information. In order to
to assess this metric, a score is calculated based on the
uncertainty of the calibration parameters as estimated by a
particular candidate segment. This score is then compared
against the score of each segment stored in a fixed-size

priority queue. If the candidate segment score is better than
the worst score in the priority queue, it is swapped into
the priority queue. Once this update step takes place, a
new estimate for the calibration parameters is obtained by
using all segments in the priority queue jointly. As such, the
priority queue will always contain the top k most informative
segments of the trajectory, where k is a tuning parameter. The
segments are of fixed size m, which is set as a constant tuning
parameter. Figure 2 shows the graphical model representing
the priority queue, candidate segment and their respective
estimates for the calibration parameters.

The joint probability distribution of the estimator state
parameters given the measurements (Z j) contained in the
segment j is given as

p(X|Z j) = p({Twc ∈ SE3} ,{ρ} ,xc|Z j) (1)

where Twc is the transformation from camera to world
coordinates, ρ is the landmark parameter given inverse depth
parameterization [17] and xc is the vector of calibration
parameters. Note that the rotation component of the camera
pose parameters {Rwc ∈ SO3} is actually locally parameter-
ized in the so3 tangent plane [23]. Using Bayes’ Rule, the
the joint probability can be factored as follows

p(X,Z j) = p(Z j|X) p(X) =
n

∏
i=1

p(zi|X) (2)

here the likelihood term p(Z j|X) is factored due to the
conditional independence assumption on individual measure-
ments zi, and the prior term P(X) is omitted as the approach
explicitly avoids a prior in favor of the priority queue. The
optimal estimate for the parameter vector X is then one that
would maximize the joint probability

X̂ = argmax
X

p(X,Z j) (3)

which would also be achieved by maximizing the likeli-
hood term. Assuming a gaussian distribution over the pa-
rameter noise, the probability distribution over an individual
term can be written as

p(zi|X) ∝ exp
(
−1

2
‖zi−hi(X)‖2

Σ

)
(4)

where ‖‖2
Σ

denotes the squared mahalanobis distance, zi ∈R2

is the 2D pixel location of the landmark measurement and
h(X)∈R2 is the measurement model, which predicts the 2D
location of the measurement given the current state variables.
The measurement model is defined as

hi(X) = P (pr,X) = P (pr,Twcm ,Twcr ,ρl ,xc) (5)

where P is a projection function which predicts the 2d
pixel location of the projection of a given landmark into
the measurement camera, given the 2d pixel location of the
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Fig. 2. Graphical model showing the priority queue and candidate segments. Triangles represent camera pose parameters, while stars represent landmarks.
Circles represent calibration parameters. In this figure, the priority queue segment size is 3 (refer to [7]). xcPQ refers to the calibration parameter estimate
computed from the measurements in the priority queue, while xcs refers to the calibration parameter estimated computed solely from the measurements
in the candidate segment. These two different estimates (and their posterior distributions) are used both to update the priority queue, and to decide if a
change event has been detected.

initial landmark observation (p2) in the reference camera,
the transformation from the coordinates of the reference and
measurement cameras to the world coordinate frame (Twcr

and Twcm respectively), the inverse depth of the landmark
in the reference camera ρl , and the calibration parameter
vector xc. In the current implementation, xc consists of the
5 parameters of the FOV camera model [3]:

xc =
[

fx fy cx cy w
]T (6)

where fx, fy, cx, and cy are the x and y focal lengths
and principal point coordinates respectively, and w is a
radial distortion parameter. Given this parameterization, the
estimates for the camera poses T̂wcn , landmark inverse
depths ρ̂l and calibration parameters x̂c can be obtained
via maximum likelihood estimation [25]. Furthermore, the
normalized covariance matrix for the posterior distribution
over the calibration parameters Σ′Xc

given the measurements
can be obtained by inverting the problem’s Fisher informa-
tion matrix I at convergence, and extracting the appropriate
submatrix. This covariance matrix is normalized so as to
remove the effects of the differing units (as described in
[7]), and is then used to compute a score which is the
priority queue update metric as previously described. Once
an update operation takes place on the priority queue, all
currently added segments will be used to jointly estimate
a new value for the calibration parameters. The newly
estimated parameters are then assigned to the frames in the
set {nchange, . . . ,ncurrent} where nchange is the frame index of
the last detected change event, and ncurrent is the index of
the current frame.

Due to the existence of critical motions which render some
calibration parameters unobservable, the candidate segment
covariance matrix is checked to ensure that it is full rank and
well conditioned. If not, the candidate segment is discarded.

B. Initialization

Similar to the method described in [7], a special initial-
ization phase is used to bootstrap the priority queue and

initialize the calibration parameters. A batch optimization is
run over all state parameters (camera locations, parameter
inverse depths and calibration parameters) from the most
recent change index nchange to the current frame ncurrent ,
much like the procedure used over a candidate segment. This
joint estimation is run until the score [7] of the batch segment
falls below a particular threshold. As the score is calculated
from the entropy of the normalized posterior covariance,
this threshold is a direct measure of the uncertainty of the
posterior, and aims to prolong the batch optimization until the
uncertainty over calibration parameters has been sufficiently
reduced.

Once this criteria is met, normal operation proceeds, where
candidate segments are evaluated and added to the priority
queue as necessary.

C. Change Detection

As shown in Figure 2, at each point in the trajectory, two
posterior distribution estimates for the calibration parameters
are available, each represented by a covariance matrix and
mean. One is computed considering only the measurements
within a candidate segment which is being evaluated for ad-
dition to the priority queue, with covariance Σ′s, and another
considering all measurements contained by the segments in
the priority queue, with covariance Σ′PQ.

The priority queue posterior (with covariance Σ′PQ) repre-
sents the uncertainty over the calibration parameters consid-
ering the top k segments in the trajectory. As these segments
can have significant temporal separation, this distribution
encodes the long term belief over the calibration parameters.
Conversely, the candidate segment posterior (with covariance
Σ′s) is calculated based on the most recent measurements
and represents an instantaneous belief over the calibration
parameters.

A possible change in the actual calibration parameters
would therefore manifest as a difference in the means repre-
sented by these two posterior distributions. The hypothesis
test that two multivariate normal distributions with unknown
and unequal covariance matrices have the same mean is



known as the Multivariate Behrens-Fisher problem. The
interested reader is directed to reviews for the univariate [8]
and multivariate [19] cases. Briefly, the null hypothesis of
the test for the change detection case is as follows

H0 = µPQ = µs (7)

where µPQ is the mean estimated for the posterior distribu-
tion considering all the measurements in the priority queue,
and µs is the mean estimated for the posterior distribution
considering only the measurements in the candidate segment.
For the purposes of this paper, the particular solution to the
Behrens-Fisher problem used is the one proposed in [26].
Given this method, the null hypothesis has an approximate
F distribution which is given by

Fp,v−p+1 ∼ T 2 v− p+1
vp

(8)

where the F distribution has degrees of freedom given by
p = dim(xc) = 5 and v− p+1 with

v =

[
1

nPQ

(
µT

d Σ̃−1Σ̃PQΣ̃−1µd

µT
d Σ̃−1µd

)2

+
1
ns

(
µT

d Σ̃−1Σ̃sΣ̃
−1µd

µT
d Σ̃−1µd

)2]−1

Σ̃ = Σ̃PQ + Σ̃s

Σ̃PQ =
1

nPQ (nPQ−1)
ΣPQ

Σ̃s =
1

ns (ns−1)
Σs

T 2 = µ
T
d Σ̃
−1

µd

where nPQ and ns are the number of measurements in the pri-
ority queue and candidate segment respectively, and ∆µ is the
difference in the mean estimated by the priority queue and
candidate segment given by µd = µPQ− µs. Note that ΣPQ
and Σs are the un-normalized posterior covariances. Once the
approximate F distribution is calculated, a corresponding p-
value can be obtained, which can be compared to a level of
significance parameter α , and the null hypothesis is rejected
if p≤ α where α = 0.1 is a tuning parameter which adjusts
the sensitivity of the change detector.

Using the previously outlined method for change detec-
tion, the uncertainty of both the priority queue and the candi-
date segment are considered in determining the probability of
a change event. If the candidate segment mean is significantly
different than the priority queue mean, but the entropy of its
posterior is high relative to the priority queue posterior, it
may have a lower probability of being a change event than
a posterior distribution with a very low entropy relative to
the priority queue, but significantly less deviation from the
mean.

Sub-optimal tracking, motion blur and non-static features
can all cause potentially misleading posterior distributions to
be estimated for the candidate segment. As such, a simple
heuristic is implemented to ensure that a single candidate
segment which has a test p-value less than the level of

significance parameter does not signal a change event. A
number ntest of candidate segments must consecutively reject
the null hypothesis, where ntest = 3 is a tuning parameter. If
such an event does take place, the detected change frame
index is set to nchange = ncurrent −ntest . This sets the starting
index for a new set of calibration parameter assignments, as
described in section III-A.

Once a change event is detected, all of the current seg-
ments in the priority queue are removed, as they represent
information contributing to a different set of calibration
parameters, and the initialization routine outlined in section
III-B is run once again to obtain an initial estimate over the
new parameters. Once the initialization criteria has been met,
the new priority queue is populate as per section III-A.

D. Adaptive SLAM

The final component is an adaptive SLAM estimator
which is able to incorporate the updates from the calibration
estimation and and ensure that maximum likelihood current
and past poses are re-estimated, in case calibration parameter
estimates are updated. An immediate choice would be a
recursive filtering method for SLAM estimation, [9] [11]
[18], However, with similar goals to that of the method
in [7], a linearized prior distribution is avoided in order to
both keep the estimator consistent, and to enable the ease
of integration of loop closure and relocalization constraints.
Furthermore, as the aim of the system is to obviate the
need for particular initialization motions (such as the SLAM
wobble), the SLAM estimator must be able to handle po-
tentially degenerate motions, where observability over cali-
bration parameters does not eventuate until some time after
initialization. In this case, past camera location and inverse
depth parameters must be retroactively updated to ensure
maximum likelihood map and trajectory estimates. Such non-
linear updates (exacerbated by the non-linearities introduced
[2] when intrinsic camera parameters change), motivate
the use of an optimization based approach, which avoids
marginalization altogether. Since consistency in filtering ap-
proaches is achieved by the use of first estimates Jacobians
[12], a consistent filter would be further susceptible to non-
linearities in the parameters and prior distribution. Consider-
ing the aforementioned points, the Adaptive Asynchronous
Conditioning (AAC) [6] method is used to adaptively adjust
the optimization window of an asynchronous bundle adjuster
based on the error of the conditioning edge to the inactive
part of the trajectory.

When the calibration parameters are updated, the land-
marks projecting in both the active and inactive portions
of the trajectory will cause an increase in the conditioning
error which will be lowered by expanding the optimization
window and re-estimating past poses and landmarks. This is
done asynchronously along with a constant-size windowed
estimator which is conditioned on the inactive part of the
trajectory and runs synchronously with the tracker.

The two AAC estimators run alongside the self-calibration
estimation and are used to obtain the final estimates over
camera position and landmark inverse depth parameters. This



is also the case when the self-calibration estimator is in the
initialization phase (section III-B). As the AAC estimator
may enlarge the optimization window to span across a
parameter change frame (indexed by nchange described in
section III-C), care is taken to ensure that the appropriately
assigned calibration parameters are used on either side of the
change event.

Note that in section IV, the AAC estimator is used
with IMU information in order to maintain scale during
an experimental trajectory, and also in order to carry the
estimation through the loss of tracking caused by de-focus
during the zoom operation (center image in Figure 1). The
formulation for the integration of IMU measurement is as
per [6]. IMU measurements are solely used for scale-correct
pose and map estimation. The self-calibration estimator does
not use IMU information.

E. Tracking and Keyframing

To obtain feature correspondences between images, a
method inspired by the tracking component of [4] is used,
where the photometric error of a re-projected feature patch is
directly minimized to obtain the new location of the feature.
To initialize features, harris corners are used in a region of the
image where not enough active tracks are present. Since the
tracking method respects projective geometry, no RANSAC
is required for frame-to-frame outlier rejection. Projective
outliers however are still rejected in the bundle adjustment
based on residuals. An NCC score is computed between the
current and original feature patches and is thresholded (at
0.875) to reject feature patches which have changed too much
in appearance.

For improved performance, and to solve the stationary
camera problem, a keyframing [15] system is implemented
based on heuristics on the rotation angle of the camera,
traveled distance, and number of successful feature tracks
from the last keyframe. If the criteria based on any of
these metrics is met, a new keyframe is inserted and the
current location of tracked features is used to add projections
residuals. As such, if the camera is stationary or hardly
moving, the features and consequently the pose of the camera
are tracked with respect to the previous keyframe, but no new
residuals are added to the problem.

IV. RESULTS

The proposed method was run on real images captured
from the visual-inertial rig in Figure 5. The rig consist of a
grayscale global shutter camera recording at 640x480 pixels
resolution and 30 frames per second, and a commercial IMU
collecting accelerometer and gyroscope data at 200Hz. A
varifocal lens is used with the camera, to allow the zoom
and focus to be manually changed while collecting data.
The images were used as described in section III-E to obtain
feature tracks. The tracks were then made available to the
SLAM and self-calibration estimators via a shared map struc-
ture. IMU information was additionally made available to
the AAC estimator for scale consistency. In all experiments,
the initial intrinsics estimates for the focal lengths were set
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Fig. 3. Reconstruction and trajectory result from running the online self-
calibration and AAC estimators on a 193.5m dataset captured on foot with
the rig shown in Figure 5. The circle points to the location of the zoom event,
where the focal length of the lens was manually adjusted from approximately
4mm to 8mm. The final translation error between the start and end poses
is 0.8m or 0.42% of the traveled distance. IMU measurements are used in
the AAC estimator to ensure scale consistency in the map and trajectory
estimates.
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Fig. 4. p-values for the hypothesis test described in section III-C, proposing
that the priority queue and candidate segment window posterior means
(corresponding to their best estimates of the calibration parameters) are
different. p-values lower than the significance parameter α = 0.1 signal
that calibration parameters have changed. The initial calibration starting
at keyframe 0, as well as the zoom event at approximately keyframe 580
can be seen as numerous consecutive p-values smaller than the significance
parameter.

to represent a field of view of 90◦, and the principal point
initialized to be the image center. The distortion parameter
w was initialized to 1.

The first experiment was performed on an outdoor dataset
captured by walking around a 2̃00m loop. A manual zoom
event was performed (marked by the circle in the Figure)
which consisted of changing the focal length of the camera
from approximately 4mm to 8mm, as per the lens specifica-
tions. Due to the manual focus during the zoom, significant
blur is introduced (as shown in Figure 1 which causes all
feature tracks to be lost. In order to verify the accuracy of
the reconstruction, IMU information is used in the AAC esti-
mator (as per [6]) to both maintain a consistent scale through
the trajectory, and also to carry the estimation through the
segments where tracking loss is encountered. Scale loss is
also encountered when the zoom event is introduced, as the
intrinsics are not instantly known. The AAC estimator is
used once again to re-acquire scale and maintain a maximum
likelihood map and camera pose estimate, although this does
not happen immediately. As the intrinsics are estimated by
the self-calibration estimator, the AAC estimator simultane-
ously attempts to find the maximum likelihood scale, camera
pose and map structure given the intrinsics. In order to
properly utilize IMU measurements. the IMU to Camera
transformation and time delay were calibrated offline in a



Fig. 5. Experimental rig used to capture images (640x480 pixels at 30fps)
and IMU data (at 200Hz). Consists of a USB camera attached to a USB
commercial-grade IMU. The varifocal lens has adjustments for zoom and
focus, with focal length variable between 4mm and 8mm.

batch optimization using a known target and set to constant
during the experiment. Note that IMU information was not
used in the self-calibration estimator, and the intrinsics were
estimated solely from visual feature tracks.

Apart from the heuristics outlined previously, the number
of segments in the priority queue is set to 5 segments of
size 10 keyframes each (for a description of these heuristics,
the reader is directed to [7]). The tracker was configured to
attempt to maintain 128 active feature tracks at any time. The
keyframing heuristics were configured to add a new keyframe
if the camera motion exceeds 0.1 radians in rotation, 0.2m
in translation, or more than 20% of tracks from the previous
keyframe are lost.

The dataset features no special initialization motion, and
involves simple forward walking from the first frame. The
self-calibration and AAC estimators initialize the intrinsics
and ensure maximum likelihood map and pose estimates,
with consistent scale as obtained from the additional IMU
measurements. Figure 3 shows the results of running the
system on the dataset. The final translation error between
the start and end camera positions is 0.8m, equating to a
0.42% error per unit distance traveled.

Figure 4 shows the p-value plot (defined in section III-C
from the same dataset. It can be seen that at the beginning
and around keyframe 580 the p-value is very small, indicat-
ing a large probability that the means of the priority queue
and candidate segment posterior distributions are different.
In these two cases, the indication is indeed warranted, as
when the batch mode for self-calibration is activated (as
described in III-B), the means of the priority queue and
candidate segment posteriors will often be quite different,
as a proper estimate of the calibration parameters is not
yet available in the priority queue. However in several
parts of the trajectory, spurious dips in the p-value can be
seen, sometimes below the significance level parameter α .
These dips are the motivation for the heuristic introduced
in section III-C. Since the spurious dips are usually for a
single candidate segment only, they do not falsely trigger
the change detection system.

The second experiment was undertaken with the aim of
comparing the pre and post change event intrinsics with
ground truth values obtained from an offline calibration
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Fig. 6. Comparisons between the ground truth intrinsics obtained from an
offline calibration library [22] and the priority queue and candidate segment
estimates. The results are computed over a short outdoor dataset with simple
forward walking motion. The plots are of the x and y focal lengths and
principal point coordinates respectively, as well as the calibration parameter
w and the change detection p-value. The detection of the zoom event is
clearly visible in the p-value plot.

method. The calibration library [22] utilized uses a pre-
defined target to estimate the intrinsics. Figure 6 shows the
results of the ground truth values compared with the results
obtained from running just the self-calibration estimator
(no AAC) on images obtained from an outdoor dataset.
Similar to the first experiment, the dataset consists of images
captured during forward walking motion, with a manual
zoom introduced partway through (detected approximately
at the 400th keyframe). The figure shows the pre and post-
zoom ground truth values, as well as the same parameter as
estimated by the priority queue and the candidate segment.
The priority queue estimate is shown as a stairstep plot, with
steps occurring when a candidate segment is folded in, and
a new estimate is computed.

It is notable that while at some points the candidate seg-
ment estimates vary wildly, the priority queue is not affected.
These bouts of instability in the candidate segment can be
caused by a variety of factors, including loss of tracking,
motion blur, and outliers. The stability of the priority queue
estimate during these portions is due to the high uncertainty
in the posterior distribution of the parameters computed for
the candidate segment. As such, these segments are not
folded into the priority queue.

After the zoom event, instability is also observed in the
priority queue estimate, as all the segments in the queue are
cleared, and the initialization routine is once again started
(section III-B). This also explains the delay between the p-
value change, and the first update to the priority queue. In this
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Fig. 7. a) Time taken per keyframe for the fixed-window SLAM, candidate
segment and priority queue estimators. It can be seen that the fixed-window
and candidate segment estimators run in constant-time, while the priority
queue estimator takes longer, but is only run when an update to the priority
queue takes place and the calibration parameters need to be re-estimated. b)
Time taken for the batch optimization. It can be seen that the optimization is
only invoked at the very beginning of the trajectory, and at the change event.
Both times the optimization is run to initialize the calibration parameters as
per section III-B.

section, the batch optimization is run to initialize an estimate
for the intrinsics. Once the initialization uncertainty reaches
below a certain threshold (section III-B), the priority queue
estimation is activated. For the most part, the estimates agree
to a satisfactory level with the offline calibration values.
Although theoretically the estimator should be consistent and
unbiased, a more thorough examination of the results (such
as with Monte-Carlo simulations) are in order, and will be
slated for future work.

The p-value plot shows a similar trend to that of Figure
4, where apart from a few spurious dips (which are ignored
due to the heuristic introduced in section III-C), the zoom
event is clearly detected by a continuous dip in the p-value,
suggesting a change event has occurred.

A. Performance

The current implementation runs at approximately 23fps
on a Core i7 2.5Ghz processor laptop with a synchronous
implementation of the AAC fixed-window and self-cal es-
timators. Figure 7a shows the timing information from the
first experiment. It can be seen that the fixed-window esti-
mator runs in constant-time during the entire trajectory. The
estimator which obtains the posterior distribution over the
candidate segment also runs in constant-time. The priority
queue estimator is dormant for most of the trajectory, except
when a candidate segment is swapped in, in which case a
spike is observed as new intrinsics are estimated. Figure 7b
shows the timings for the batch estimator. It can be seen that
as stated during section III-B, the batch estimator is only run
during initialization or when a change event is detected, in
order to initialize the estimate for the calibration parameters.
Currently, all estimators in Figure 7 are run synchronously.
Run independently, the front-end tracker and fixed-window
optimization achieves greater than 60fps. A more optimized
approach would be to run the front-end, candidate segment,
and AAC solver asynchronously. This would both increase

the average frame-rate of the system as well keep the front-
end running at the fastest rate.

V. CONCLUSIONS

This paper presents a method for online, constant-time
self-calibration and automatic change detection and re-
calibration. Experiments demonstrate that the system can
estimate accurate calibration parameters, camera poses and
landmark depths without any prior information. A filtering
framework is explicitly avoided in favor of an adaptive
asynchronous optimization [6] which provides the maxi-
mum likelihood current and past camera pose and land-
mark estimates. Rather than roll past information about the
calibration parameters into a linearized prior distribution
prone to inconsistency, a priority queue [7] is used to store
the most-observable segments in the trajectory to estimate
the calibration parameters. The approach enables ”hands-
off” initialization, where no specialized motion is needed.
As parameters become observable over time the relevant
segments are automatically included in the priority queue,
and past camera pose and landmark parameters are updated
when necessary.

A novel application of multivariate probabilistic change
detection spurs the re-estimation of parameters if a signifi-
cant change occurs. This causes re-calibration in situations
where the physical sensor rig is perturbed. To the authors’
knowledge, this work is the first instance of online self-
calibrating SLAM which can handle a significant change
in the calibration parameters while still estimating the full
maximum likelihood map and trajectory.

With additional IMU measurements to aid scale estima-
tion, the system is able to achieve a distance-traveled error of
0.42% even in the presence of a significant calibration change
and total loss of tracking. Experiments show that parameter
estimates from before and after a calibration-change event
closely match values obtained via manual estimation with a
calibration target.

While this paper has demonstrated real-time methods for
two long-standing challenge-problems in robotics, namely
1) power-on-and-go self-calibration and 2) robust long-term
SLAM in the face of model perturbation, the application
of probabilistic change detection is perhaps the most com-
pelling result; it is a powerful tool for introspection and
model verification more generally.
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