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Abstract— This paper describes a local planning, control and
learning framework enabling high-speed autonomous ground-
vehicle traversal of rough 3D terrain replete with bumps,
berms, banked-turns and even jumps. We propose an approach
based on fast physical simulation and prediction, which we
find offers numerous benefits: first, it takes advantage of the
full expressiveness of the inherently non-linear, highly dynamic
systems involved; second, it allows for the fusion of local
planning and model-based feedback control all within a single
framework; third, it allows vehicle model learning. The final
and most important reason to use physical simulation as a
unifying framework is that it works well in practice. The system
is experimentally validated on a high speed nonholonomic
remotely controlled vehicle on undulating terrain using a
scanned 3D ground model and motion capture ground-truth
data. Parameter reduction is achieved with the use of cubic
curvature control primitives and a fast precomputed lookup
table.

I. INTRODUCTION
Recent developments in path planning and navigation have

enabled operation in increasingly challenging environments.
The use of motion primitives [9] and stochastic search
methods such as RRT and RRT* [8] [6] have resulting
in algorithms that successfully navigate complex obstacle
fields even in higher order configuration space. A major
advantage of these methods is that they can employ nonlin-
ear dynamics models thereby enabling physically accurate
planning in complex environments without approximation
or linearization. However, this advantage comes at a perfor-
mance price as stochastic methods invariably sample infeasi-
ble trajectories. Conversely, optimization based methods [4]
employ effective initial guesses and numerical or analytical
optimization techniques to rapidly converge on optimal paths.
However due to the reliance on the accuracy of the initial
guess, these methods are susceptible to failure or suboptimal
performance depending on the quality of this guess.

The quality, optimality and methodology of the plans
notwithstanding, their open loop performance in real robots
is inevitably impaired by the existence of imperfections or
extraneous inputs that may not have been included in the
dynamics model. Therefore for real-life applications, some
form of closed loop control is desired. Moreover, both the
planner and control systems rely on an accurate model in
order to properly control and plan for the robot. Due to
the difficulty of obtaining accurate model parameters, it
is desirable to learn model parameters by observing the
response of the robot to control inputs. Recent developments
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Fig. 1. a) Local plan (red curve) generated between two points on a
3D scanned quarter pipe ramp and the simulated vehicle tracking the plan
in open-loop mode. b) Motion captured test vehicle performing the same
manoeuvre.

in Model Predictive Control(MPC) [3] and Learning-based
Model Predictive Control (LBMPC) [2] [10] have strived to
both implement model-based control schemes and to improve
the underlying model parameters by observing the response
of the system to inputs. The advantage that these schemes
hold over more traditional control methods is twofold: the
incorporation of increasingly complex models, and the abil-
ity to generate control policies over a predicted series of
timesteps into the future. The latter offers clear advantages
when controlling an infeasible trajectory or one that was
made using an inaccurate model.

An alternative to model predictive control, traditional
feedback systems use static and/or dynamic feedback of the
state to determine the controls for the next time steps. Recent
developments in this field have resulted in methods allowing
the calculation of Lyapunov functions for nonlinear systems
[5] and defining graphs of Lyapunov-stable region around
states as in the case of LQR-Trees [11]. Generally speaking,
these methods rely on the linearization of the state transfer
function in order to analytically obtain control policies.



Considering that the planning, MPC and model learning
systems all utilise a model of the system, a unified system
could be conceived to utilise the same model to perform
all three tasks. The main contribution of this paper is
such a system encompassing planning, control and online
model learning using a unified, simulation-based model and
operating in real time. We use a singular boundary value
solver in all three cases in conjunction with cubic curvature
polynomials for parameter reduction [7] . This allows accu-
rate planning and control in full 3D environments and allows
the learning of physical model parameters such as wheel
radius, steering angle ratios and friction coefficients. Ground-
truthed experimental evidence is also presented showcasing
the results of the system planning over waypoints on un-
dulating terrain and subsequently tracking the trajectory on
a high speed nonholonomic robotic platform with on-line
model learning.

II. METHODOLOGY

The different components of the planning and control sys-
tem rely on a unified boundary value solver which produces
a control law in order to navigate the robot between the
start and goal 6DOF poses. For the purposes of this paper,
we have implemented a parameter reduction and boundary
value solver to plan for and control a nonholonomic remote
control robot through high speed trajectories on undulating
terrain. This formulation relies on a good initial guess for the
steering and acceleration commands between two waypoints
w1, w2 each parametrized as [x, y, z, p, q, r, v] where v is the
desired velocity with which the robot should reach the 6DOF
coordinates of the waypoint. The optimization is facilitated
with an initial guess utilising cubic curvatures for steering,
and a linear velocity profile between waypoints.

A. Dynamics Model

The centrepiece of the system is the dynamics model. We
use the Bullet Physics Engine [1] to simulate the dynamics
of a vehicle with nonholonomic constraints on 3D terrain.
A multithreaded framework allows the full use of modern
multicore processes resulting in quick simulations for finite-
difference based optimization. Traditionally, the state transfer
function is defined as:

x̌ = f(x, u, p)

Where x is the current state, u is the control input, and p
defines the model parameters. In the case of the numerically
integrated Bullet Physics model, the state transition is defined
as:

xt+1 = F (xt, u, p)

Where F (x, u, p) encompasses the entirety of the dynam-
ics of the vehicle and interaction with the terrain. In general
terms, this function can be replaced with any simulation
system resulting in an update in the state, given the control
inputs, previous state and model parameters.

Fig. 2. Integration of cubic curvature polynomials in Cartesian space
between [0, 0, 0, 0] and [2, 0.6, π, 0] with varying values of π

B. Parameter Reduction

The boundary value solver used relies on the reduction in
control space dimensionality with the use of a control law.
In the proposed system, we have employed cubic curvature
polynomials [7] as a means to parameter reduction.The
trajectory curvature is parametrized as a function of the
travelled distance in the following form:

κ = a+ bs+ cs2 + ds3 (1)

Where a is the starting curvature, b, c, and d are the
cubic polynomial coefficients and s is the distance travelled
along the trajectory. Individual polynomials are constrained
using the endpoints coordinates [x, y, θ, κ]. To obtain the
cubic parameters necessary to reach the desired endpoint, a
precomputed lookup table is employed followed by a Gauss-
Newton optimization using the analytical Jacobian of the
polynomial. Figure 2 shows an example of cubic curvature
polynomials integrated in 2D Cartesian space. However since
the planner operates in 3D space, we project the curvature
polynomial onto a 2D plane, with a normal which is linearly
interpolated between the normals of the two waypoints as
shown in Figure 3. This allows the 2D curvature to better
estimate the control law that will guide the vehicle and
resolves singularities from waypoints perpendicular to the
ground plane.

Fig. 3. The projected 2D trajectory (dotted blue) between two 3D waypoints
on a curved manifold. This serves to better estimate the trajectory between
the waypoints as well as eliminate singularities when projecting waypoints
which are perpendicular to the ground plane.



C. Model Compensation

The linear velocity profile used between waypoints em-
ploys a constant acceleration model. However, due to the
underlying physics-based vehicle model, this simple accel-
eration control law does not constitute a good initial guess.
To improve upon this guess, several compensation factors
are utilised to mitigate the extraneous influences introduced
by the terrain and vehicle dynamics. Compensations are
applied iteratively after each physics model update. This
allows folding in detailed terrain information such as slope
and also simulated vehicle parameters such as suspension
force and extension. Furthermore, the underlying constant
acceleration model remains valid once all other factors are
compensated for.

1) Gravity Compensation: The constant acceleration
model used between waypoints is by definition unable to
account for terrain slope and undulation effects. We have
implemented a simplified compensation model which ac-
counts for the axial forces imparted by wheel interaction with
inclined terrain (See Fig. 4a). The position of the wheels
as well as the corresponding contact normal is obtained
after each simulation step, and used to compensate the
acceleration model for the following step.

2) Steering Compensation: Figure 4b shows the axial
force component imparted as a result of the front wheel
deflection during cornering. This force results in significant
deceleration during tight turns and is compensated for in a
similar fashion to gravity compensation at the end of each
simulation step.

3) Friction Compensation: Friction compensation is un-
dertaken iteratively similar to previously discussed factors.
At each timestep, the friction forces on each wheel are
calculated by the physics model. This is then used to offset
the constant acceleration model accordingly. We have opted
to use a simple friction model based on static/dynamic
coefficients of friction, and the normal forces imparted on
the springs. This information is readily available from the
physics-model at each simulation step.

D. Boundary Value Solver

The boundary value optimization is performed by min-
imizing the trajectory cost C which we have defined as
the 6 dimensional residual between the destination waypoint
and the simulation endpoint. The optimization is performed
by first solving a Gauss-Newton iteration with line search,
and if the error norm is not reduced, a coordinate descent
step is performed if possible. The Jacobian of the forward
simulation is defined as:

J =


∂c1
∂p1

· · · ∂c1
∂pn

...
. . .

...
∂cn
∂p1

· · · ∂cn
∂pn

 (2)

Where pn is a control law parameter (such as a curvature
polynomial coefficient) and cn is a cost parameter. In the
presented implementation, the cost is calculated as projected
back onto the 2D plane of the cubic curvature polynomial

g

n1

n2

a) b)

Fig. 4. a) Axial forces (in red) resulting from wheels on inclined terrain.
b) axial forces (in red) resulting from front wheel steering deflection.

(See Fig. 3) and is parametrized as [x, y, θ, v]. Each col-
umn ∂c1

∂pj
· · · ∂cn∂pj

of J is calculated by pushing forward the
dynamics model using a set of control parameters p with
perturbations ±ε along dimension j. This computation is
accelerated by the use of a multithreaded forward physics
model, solving for all dimensions of the Jacobian simulta-
neously. The Gauss-Newton delta (δp) is then calculated by
Cholesky factorization as follows:

JTJ → RTR

RT y = JT b

Rδp = y

Where b is the vector of residuals calculated by running
the current parameters p and obtaining the endpoint error(s).
The validity of the assumption of quadratic convergence
made by this optimization is dependent on many factors
including interactions with the terrain and the dynamics
model. After obtaining the Gauss-Newton δp, we perform
a multithreaded line-search step by pushing forward the
physics model simultaneously with several scaled values of
δp.

pn+1 = pn + λ(δp)

Where λ ≤ 1 the a scaling factor. If none of the scaled
values of δp improve upon the error norm, we perform
a coordinate descent if possible, by using the best norm
obtained when calculating the Jacobian (Eq. 2) by finite-
differences. The optimization ceases if the either the error
norm is improved past a certain threshold, or if we are in
a local minimum as indicated by the inability to perform a
coordinate step to reduce the error norm.

E. Real-Time Control

In this section we present an MPC-like real-time control
scheme based on fast replanning to account for inaccuracies
and extraneous influences. Similar to MPC based control
systems, our approach is formulated by constantly optimizing
the trajectory ahead of the vehicle by solving new control
plans which provide a viable control law from the vehicle’s
current position, to a point on the trajectory further ahead.
As part of the holistic approach, we have used the same
boundary value solver previously described to plan between
waypoints, in creating the control plans. Due to the unified
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Fig. 5. Replanning-based control. The active control plan’s (red) initial
curvature matches that of the vehicle’s current path curvature. Each control
plan is optimized to plan to a point ahead on the trajectory based on a
pre-define lookahead time.

underlying steering control law, the control plans tend to
converge back onto the original trajectory, thereby avoiding
the pitfalls of follow-the-leader trajectory trackers which are
prone to diverge if the target vehicle is set too far ahead, or
oscillate if the target vehicle is too close. However, in order
to achieve this behaviour, the starting curvature (denoted by
the constant a in Eq. 1) of the control cubic curvatures has to
match that of the vehicle’s instantaneous path curvature as
shown in Figure 5. This is also a requirement for smooth
steering between control plans, as each will start with a
curvature equivalent to that of the vehicle’s current path.
Consistent starting curvature is guaranteed by setting the
constant a before the 2D optimization which solves Eq.
2. However, if the initial curvature required is too high,
the 2D cubic required to solve the control plan might be
infeasible. In these cases, the control system falls back to
an initial curvature of zero to solve for a feasible control
plan. Ideally, an alternative control law formulation would
enable control plans that converged rapidly with any choice
of initial curvature.

Furthermore, each control plan takes a small amount of
time to optimize via the boundary value solver. During this
time, the vehicle will be following the previous control plan.
Our implementation includes a timestamp which is used to
smoothly interpolate between plans as they become available.
The control plans also constitute an any-time algorithm, as
the optimization simply improves upon the quality of the
initial guess with each iteration. The more time given to
the algorithm, the higher the accuracy of the endpoint will
be. It must be noted that each control plan is a valid set
of controls that should ideally converge the vehicle back
onto the trajectory in open-loop mode, given an accurate
vehicle and terrain model. Therefore real-time control is
established if the time taken to optimize tractable control
plans is less than the lookahead time, allowing constant
replanning without ever exceeding the bounds of a single
control plan.

F. Online Model Learning

The quality of the control and planning provided by the
aforementioned system relies significantly on the quality of
the underlying model. Since a full physics-based model is
used in the optimization, the number of parameters which

segment 
    time 

trajectory time 

Fig. 6. The observed trajectory (black) shown with segments and their
respective simulation results (red). The disparity between the simulation
endpoint and the segment endpoint is the residual which is minimized in
the optimization. If the residual is zero, the model perfectly matches the
real vehicle’s performance.

could be adjusted rules out the possibility of manual tuning.
We propose an optimization based learning system which
is formulated almost identically to the control and planning
systems, and which serves to tune select parameters in the
model to match those of the real vehicle. The proposed
methodology involves observing the vehicle and also the
control commands given to it for a period of time, and
optimizing the underlying physics model to replicate the
observed behaviour, given the same control commands. We
formulate the optimization by splitting the observed trajec-
tory into segments as shown in Figure 6. Each segment is
then simulated and a Jacobian formed as per Eq. 2 but where
pn is a model parameter which is changed by ±ε. Due to
the nature of the optimization, we can obtain JTJ and JT b
for the trajectory directly as follows:

JTJ =

n∑
i=0

JT
i Ji

Jb =

n∑
i=0

JT
i bi

Where Ji is the Jacobian if the ith segment, n is the total
number of segments, and bi is the error vector of the ith
segment which we have defined as the disparity between the
observed trajectory and the final position of the simulated
vehicle (See Fig. 6). We then apply the resulting δp to the
model and repeat the process. As per the planning and control
optimization formulations, the learning system implements a
Gauss-Newton and line search stage which is followed by
a coordinate descent stage if needed. The optimization ends
when either a sufficiently small norm is obtained, or if a local
minimum is detected. The learning system is implemented as
an on-line algorithm allowing continued refinement of model
parameters.

III. RESULTS

The planner, control and learning systems were experi-
mentally validated in a motion captured environment, using
a terrain model which was 3D scanned using a Microsoft
Kinect sensor combined with the motion capture system and
a fusion algorithm. Due to the simulation-based model, any
method of obtaining 3D terrain data could be used to simu-
late the dynamics. This includes real-time acquisition using



cameras, laser scanners and/or dense tracking and mapping
(DTAM) methods. In our experiments the waypoints were
manual placed over the terrain in order to put the vehicle
through desired manoeuvres including straight tracks, curves,
steep inclines and jumps.
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Fig. 7. Acceleration (red) and steering (blue) commands generated by the
planner after optimization for the ramp manoeuvre depicted in Fig. 1. Note
the gravity compensation during the uphill and downhill sections resulting
in acceleration and braking forces.
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Fig. 8. Motion capture results (blue) of the control system running on a
planned trajectory (red) with a small jump (center) and quarter-pipe ramp
manoeuvre (left). The model was tuned using a combination of the learning
system and manual adjustments.

A. Boundary Value Solver

Due to the quality of the initial guess, the boundary
value solver successfully resolves feasible trajectories be-
tween waypoints. Furthermore the underlying model follows
these trajectories precisely in open-loop control. However
the choice of waypoints heavily influences the success or
failure of the planner, as is expected. Figure 1 shows a plan
generated between two waypoints on a scanned 3D model
of a quarter-pipe ramp and Figure 7 shows the resulting
acceleration and steering commands. Gravity compensation
can be seen in Figure 7 and is vital to the feasibility of this
plan as the vehicle needs to accelerate uphill and decelerate
downhill in order to maintain velocity. The local planner can
fail if the waypoints are poorly positioned or their velocities
chosen improperly, for example if two waypoints are placed
either side of a wall.

B. Real-Time Control

The real-time controller was tested on a trajectory includ-
ing a small jump and sharp turn over a quarter-pipe ramp.
Figure 8 shows the resulting vehicle path (blue) compared
to the planned trajectory (red). It must be noted that the
model used in this experiment was tuned using a combination
of the learning system and manual adjustments. Manual
adjustments were necessary as model-learning was not per-
formed in high acceleration scenarios such as jumping, and
small adjustments to the learned parameters was required to
optimize the performance. The results obtained show that the
vehicle is capable of accurately tracking the trajectory even
in challenging manoeuvres, however as seen in Figure 8 ,
divergence can still be observed in the case of jumps where
the steering is ineffective. This has the tendency to disrupt the
real-time controller, as the boundary value Jacobian becomes
invalid if changes in control input do not adequately perturb
the endpoint of the control plan. This is the case when the
vehicle is airborne.
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Fig. 9. Motion capture results of the control system (top graph) running
on a planned figure-eight trajectory (red) while performing online model
learning. The trajectories at various times show the improvement in tracking
as the model parameters converge (bottom graph) to stable values.

C. Online Model Learning

The learning system was tested on a figure-eight trajectory
over two model parameters: friction coefficient and wheel
base. These model parameters, while not being all encom-
passing in their influence over the model have significant
impact on the steering and acceleration response of the vehi-
cle. They were chosen to test the learning system’s response
to deviations from the trajectory. While these parameters
have underlying physical units, it is not expected that the
values obtained from the model learning will reflect these
values. This is due to the existence of unknown factors
such as servo command coefficients, that will ultimately
change the physical bases of the parameters. Nevertheless,
the learned wheel-base parameter was observed to converge
reliably to a value close to the actual vehicle wheelbase of
0.28m. However, it is expected that learned values will bring
the underlying model closer to the real-world vehicle, and



therefore improve planning and control. Figure 9 shows the
results of model-learning on a flat figure eight trajectory
at different time intervals. It is evident that as the model
parameters for wheel base and friction change, the adherence
of the vehicle to the intended trajectory is significantly
improved.
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Fig. 10. Aggregated 6 DOF pose (blue) and velocity (green) error as
a function of time performed on the figure-eight trajectory of Figure 9.
The effect of the convergence of parameters can be seen on the repeated
trajectory error pattern.
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Fig. 11. Model parameter evolution during on-line learning for multiple
experiments on the figure-eight trajectory of Figure 9.

Figure 10 shows the aggregated position and velocity error
for a single run on the figure-eight trajectory, while perform-
ing model learning. It can be seen that the repeated error
pattern around the trajectory monotonically decreases as the
parameters converge. This also corresponds to a significant
visible reduction in overshoot and improved tracking. Figure
11 shows the parameter convergence over multiple runs on
the figure-eight trajectory and with different starting values
for the parameters. It can be seen that the parameters, while
not perfectly converging to the same point every time, tend
to arrive at similar values.

IV. CONCLUSIONS

We have presented a holistic solution to local planning,
real-time control and model learning which uses a unified
simulation-based underlying physics model, folding in com-
plex vehicle and terrain dynamics. The presented solution
uses cubic curvature control laws to reduce the dimension
of the control space while employing iterative compensation
to deal with extraneous effects such as friction, terrain slope
and steering deceleration. The solution was experimentally
validated on a motion-captured vehicle and shown to execute
manoeuvres on banked terrain and small jumps in real-time.
However the real-time control system is still susceptible to
disruption over jumps, and the model learning system has
not been fully validated with a large number of parame-
ters. Further experiments should also evaluate the ability
to produce physically accurate model parameters. However,
both systems have been shown to work well in practice and
have produced good results in a challenging setting. Future
work will be aimed towards testing the system on more
challenging terrain, validating the model-learning with more
parameters and implementing global planning solutions to
place waypoints using the same holistic approach.
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