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Abstract. This paper is concerned with real-time monocular visual in-
ertial simultaneous localization and mapping (VI-SLAM). In particular
a tightly coupled nonlinear-optimization based solution that can match
the global optimal result in real time is proposed. The methodology is
motivated by the requirement to produce a scale-correct visual map,
in an optimization framework that is able to incorporate relocalization
and loop closure constraints. Special attention is paid to achieve robust-
ness to many real world difficulties, including degenerate motions and
unobservablity. A variety of helpful techniques are used, including: a rel-
ative manifold representation, a minimal-state inverse depth parameter-
ization, and robust non-metric initialization and tracking. Importantly,
to enable real-time operation and robustness, a novel numerical dog leg
solver [17] is presented that employs multithreaded, asynchronous, adap-
tive conditioning. In this approach, the conditioning edges of the SLAM
graph are adaptively identified and solved for both synchronously and
asynchronously. In this way some threads focus on a small number of
temporally immediate parameters and hence constitute a natural “front-
end”; other threads adaptively focus on larger portions of the SLAM
problem, and hence are able to capture functional constraints that are
only observable over long periods of time — an ability which is useful
for self-calibration, during degenerate motions, or when bias and grav-
ity are poorly observed. Experiments with real and simulated data for
both indoor and outdoor robots demonstrate that asynchronous adaptive
conditioning is able to closely track the full-SLAM maximum likelihood
solution in real-time, even during challenging non-observable and degen-
erate cases.

1 Introduction

It is well known that the batch bundle-adjustment solution to monocular SLAM
is the gold standard, in that it’s form defines the Cramer-Rao lower bound and
that it takes advantage of all measurements over all time to compute the max-
imum likelihood parameter estimate [2,21]. Visual-inertial bundle adjustment
is significantly more challenging than vision-only BA [8]. Vision-only monoc-
ular systems suffer from a well-studied scale ambiguity. Adding an IMU can
makes scale observable, however inertial measurements complicate matters when
it comes to computing the global MLE solution incrementally in real-time.



For bundle adjustment to be real-time for use on robots, a local approach is
typically employed [13]. With an IMU this is difficult since the local adjustment
region may need to be very large in order to ensure observability of certain
parameters. Indeed, under certain degenerate motions such as constant velocity
forward motion, some parameters may never be observable (though this rarely
if ever happens in practice) [6,5].

An alternative to local-bundle adjustment is to only keep a sliding window
of the most recent poses and landmarks active, and marginalize the rest into a
prior distribution [19,14,18|. This is equivalent to a fixed-lag Kalman smoother
[11,3] and recently such systems have shown remarkable results [4,9,10].

Marginalization into a prior distribution like this is predominantly employed
for computational efficiency — if it were possible to compute the full MLE solution
in real-time it would be preferable. Marginalization is also costly because it intro-
duces conditional dependencies between the remaining parameters causing “fill-
in”. Fill-in can be addressed by cutting feature tracks and carefully marginalizing
poses and landmarks simultaneously [15]. Marginalization is also potentially dan-
gerous because it bakes in linearization errors which can lead to over-confident
estimates or divergence unless one is careful to maintain consistency [4]. Carrying
prior distributions induced from marginalization also necessitates an expensive
global optimization at loop-closure to obtain the correct marginal. This paper
attempts to remedy these issues by avoiding marginalization altogether.

Instead of relying on marginalization we take advantage of conditioning,
which has shown surprisingly robust and accurate results in the computer vi-
sion community [7,2] and avoids locking in incorrect parameter estimates when
used adaptively [20]. Using a relative manifold is also important because opti-
mal relative transformation estimates in SE3 are by definition near zero. This
fact allows multiple threads to asynchronously optimize and update different
overlapping subsets of the full problem without detriment.

Adaptive asynchronous conditioning has other benefits: it can a) perform ro-
bust initialization even under degenerate motions, b) allow constant-time loop
closure without expensive loop-long re-linearization, ¢) operate even during poor
observability conditions, e) avoid inconsistency associated with early marginal-
ization and re-linearization, f) track the relative-space maximum likelihood so-
lution in constant time, d) enable power-on-and-go self-calibration. We find that
adaptive asynchronous conditioning closely tracks the global batch optimal solu-
tion, at a fraction of the computational cost, which enables real-time operation.

2 Sliding window optimization

2.1 Fixed window formulation

The state vector of the parameters inside the sliding window is defined as

x = [{Tuwo v b} {p1} (1)

where { Ty Vo b} is the set of pose parameters: T,,, € SE3 is the transforma-
tion from vehicle to world coordinates, v,, € R3 is the velocity vector in world
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Fig. 1: Representation of the visual-inertial system.
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coordinates and b € R is the IMU bias vector for the gyroscope and accelerom-
eter. As mentioned previously, world coordinates here refers to the lifted local
coordinates on which the optimization takes place. Similarly {py} is the set of 1-d
inverse-depth parameters for each landmark [16]. Since landmarks are parame-
terized in inverse depth, each must be back projected from its reference frame
before being projected into the measurement frame. The reprojection error of
the kth landmark with reference frame j into the ¢th frame is defined by:

', = Zik — W(T;ssz_ml)i vaj T'USXSjk) (2>

where z;; is the measurement in image coordinates, X, = [uv1p] is the land-
mark inverse depth parameterization in the sensor frame obtained from back-
projection, T, is the trasnformation from the sensor to the vehicle frame, and
7 is the non-linear projection function. Inertial constraints are formed between
subsequent states by integrating IMU measurements. The constraint between
two subsequent states ¢ and j with poses Ty, and Ty, and velocities v; and
v; is defined as rz,; € R and is formulated as
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where Tgivj and v;; are the transformation and velocity deltas obtained by
integrating the IMU measurements, and log(-) € R is the SE3 logarithm function
(with subsequent representation in minimal coordinates) as applied to an error
state transformation. The residual on the gyroscope and accelerometer biases

is derived from modeling them as random walk processes. The transformation
delta due to the IMU integration is defined as

/ !/
T, , = [ng tiﬂ} (4)
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where R}, € R3*3 is the rotation delta which is a function of the angular
velocity measurements {w € R®} and the gyroscope biases b, € R?. t}; € R?



is the translation delta which is a function of the acceleration measurements
{a € R3}, the accelerometer biases b, € R?, the gravity vector g € R? and the
initial velocity v; € R3.
R;ivj is obtained by first integrating angular velocities in the world frame
and then transforming the result to be relative to the starting orientation:
Rl =R\ Rl,

ViVj

where R}, is the result of the discrete integration of angular velocities {w} in
the world frame, and also depends on the gyroscope biases b,. Each integration
step is formulated as

Riﬂtnﬂ = exXp ( /wt [w +by] dt) /wtn (5)

where R/, is the rotation matrix from world coordinates to the coordinate
frame resulting from the integration up to time t,,, w € R3 is the angular velocity
vector obtained by the gyroscope at time ¢, and b, € R? is the gyroscope bias
vector. The angular velocity measurement, taken in the body frame represents
a rotation in the tangent space of R/, , however since the rotation is integrated
in world coordinates, the angular velocities must be transformed from the body
frame to the world frame. This transformation is undertaken by the adjunct,
which for SO3 is simply a multiplication by the rotation R/, . Once in the
world frame, the angular velocities are integrated and a rotation delta is obtained
via the SO3 exponential exp. Note that the transformation from/to minimal
coordinates in exp has been omitted for brevity.

The translation vector t] ;€ R3 is obtained by integrating the body acceler-
ations in the world frame, and removing the translation of the initial frame t;
as follows:

I /
tij = twj — tuwi

The discrete integration step for t,; is formulated as

tn
t =t +/ +1V dt (6)
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where v; € R3 is the velocity integrated up to time t,,, a € R? is the vector of
accelerations measured in the body frame and b, € R3 is the accelerometer bias
vector. As the accelerometer measurements are integrated in the world frame, the
measurements and biases in the body frame at time ¢,, must be transformed into
the world frame, which is accomplished by multiplying by the body orientation
at time ¢, Ry, .

Although the aforementioned derivation uses euler integration for simplica-
tion, all integrations, including the integration of angular velocities via the SO3
exponential exp are undertaken via fourth order Runge-Kutta. Considering (5)



through (7), it can be observed that the rotation delta R;, , is independent of
the translation delta tgj, and also that the contribution of the starting velocity
v; and the gravity vector g can be factored out of the translation delta t;j as
follows

1
t], = Atv; + §Azng +t%;

where t*;; is integrated as in equations 6 and 7, but with the starting velocity
(v;) and gravity vector g set to zero, and At is the entire duration over which
t*;; is integrated. Equation 4 can then be rewritten as
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(8)
A similar factorization can be performed for v/, ; to separate out terms that de-
pend on the initial rotation and translation. The factorization of T;ivj and vi; is
undertaken in order to simplify the partial derivatives drz,; /0T wy,, Orz,; /0T wy,,
and Jrz,; /Ov; which are needed for the optimization. These would normally need
to be propagated through the integration of inertial measurements via the chain
rule. However, due to the factorization, these derivatives can be taken over the
entire constraint by first integrating the inertial measurements as per (8) and
then taking the aforementioned derivatives of (3). This both simplifies the pro-
cess of calculating these derivatives, as well as avoidining the loss of accuracy
due to the propagation of the derivatives through the Runge-Kutta integration.
Unfortunately no such factorization can be made for drz,; /0b which must be
propagated through the Runge-Kutta integration via the chain rule.

2.2 Optimization formulation

The cost function minimzed in the optimization consists of the aforementioned
inertial and visual residuals and is formulated as

n m
S

i=1 k=1

n
B+ ez, (9)
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where the notation ||x||%, signifies the Mahalanobis distance given the measure-
ment uncertainty Y. In all cases residual uncertainties are calculated via Gaus-
sian error-propagation from raw measurement uncertainties. In the case of visual
measurements, a standard covariance of 1 pixel is used for both z and y image
directions. For inertial measurements, the covariance of the final measurement
must be propagated through the integration given the uncertainties in the ac-
celerometer and gyroscope measurements supplied by the manufacturer. Since
inertial measurements are integrated via the Runge-Kutta algorithm for accu-
racy, the uncertainties must also be propagated through each integration step as
follows:
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where the weight for the particular residual rz is given by Wz = (EI)_l. To
obtain the measurement covariance X7, the covariance of each inertial mea-
surement at time ¢ denoted by C,, is propagated through the single-step state
integration jacobian %. This step is then repeated for each inertial measure-
ment and propagated via the chain rule to obtain the covariance for the final
integration state. In order to obtain the covariance for the residual, the final
integration state covariance is propagated through the residual jacobian gfé ,

which is trivial with the exception of the derivatives for the SE3 logarithm.

Landmarks which are observed in the active window of frames but whose
reference frame falls outside of it provide conditioning edges during the opti-
mization. This is done by considering their reprojection error in poses outside
of the active window where they were observed. A single IMU conditioning edge
corresponding to the IMU residual between the last frame in the sliding win-
dow and its immediate parent frame is also used. The trajectory and map are
represented in a relative graph [12]|. This is shown in Figure 2.

To reduce complexity, the optimization is performed on a lifted window of the
relative chain in which all poses and landmarks are transformed into a consistent
local coordinate system, referred to as the world coordinate system in the afore-
mentioned methodology. This allows reprojection errors to form without requir-
ing the traversal of intermediate poses between the reference and measurement
frames. Once the optimization has finalized, the results are transformed back
into the relative representation for map storage.

conditioning edges

IMU integrations

N J J
v

inactive window active window

Fig. 2: Conditioning edges of the sliding window bundle adjustment.



2.3 Adaptive window implementation

Since marginalization is forgoed, an adaptive local bundle adjustment is incor-
porated, which dynamically adjusts in size, in order to appropriately fold in
parameters as needed. As is especially prominent when using an IMU, all pa-
rameters are not necessarily observable at any given time. Therefore, a fixed
window cannot guarantee the optimization of a parameter at the time it becomes
observable. Dynamically adjusting the window serves to allow the optimization
to include parameters even if they are not immediately observable. Examples of
these parameters are accelerometer and gyroscope biases and the direction of
gravity, which is implicitly parameterized.

The condition used to assess whether the size of the window needs to be
increased is based on the residuals observed in the conditioning edges shown in
Fig. 2, after the optimization at iteration k has converged. The measurement
covariances can then be used to assess whether the conditioning residuals are
within expected bounds using a x2 test. The conditioning Mahalanobis distance
is

_ 2 2
ee =S leplB, + ez l%,,
ieC
where the summation is over the set C' comprising of all conditioning visual
residuals, and rz, is the single conditioning inertial residual connecting the active
and inactive poses. Given e., an adaptive condition variable oy can be defined
as

€c
b Inv x2 (3,d)’

where Inv x? (3,d) is the inverse cumulative x? distribution for d dimensions
evaluated at probability 5. The dimensionality d is derived from the 15 residuals
of the single conditioning inertial residual plus 2 residuals for each visual condi-
tioning residual. Initially if aip, > 1, the conditioning residuals lie outside the Sth
percentile probability as expected from the residual covariance, so the window
size is increased, and the optimization is run to convergence. While ajy1 > 1
and ajy1 < ag, the window size is continually increased and the optimziation
is run once again to convergence, without adding additional frames. Otherwise,
the window is resized to its default minimum length and new frames are added
to the window.

The intuition behind this adaptive criterion is that when new residuals render
past parameters observable, and they are not present in the active state, tension
will be introduced into the conditioning edges. The residuals defining these edges
would then fall outside their expected distributions. Increasing the window size
until the conditioning edges are within expected bounds ensures that unobserved
dimensions become part of the active window. In the case that the conditioning
error is not decreasing but is still outside expected bounds, the window size is
returned to its default minimal value, as the error is more likely explained by
outlier measurements.

d=2[C| + 15



The size of the dynamic window could stretch far if a parameter does not
become observable for an extended period of time. In this case obtaining a real-
time solution will become infeasible. In order to obtain a real time solution, an
asynchronous adaptive window BA is used in conjunction with a small fixed size
window BA which runs synchronously in real time. The use of a relative map
representation ensures that updates to the map remain small, allowing multiple
BAs to update it asynchronously without clashing.

3 Experiments

-
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Fig.3: A loop consisting of a 200m dataset taken on foot around the GWU
campus, superimposed over satellite imagery. The AAC optimization consists
of a fixed window of 15 keyframes plus an asynchronous adaptive window with
a minimum of 15 keyframes. The batch translation error as a percentage of
traveled distance is 0.71% while the AAC error is 0.72% (a) The resulting poses
obtained by running AAC, batch and a fixed-window optimization over the data.
(b) The ratio of the AAC window to the total number of keyframes. A ratio of
1.0 indicates a batch solve. (¢) The condition variable «y, for every keyframe.
Values larger than one indicate an expansion is necessary.

To test the proposed method, experiments are run on two sensor platforms.
Both platforms consist of a camera with wide-angle lens and a commercial grade
MEMS accelerometer and gyroscope. The camera captures VGA images at 30fps



and the IMU sample rate is 120Hz. In order to evaluate how closely the AAC
method matches the global MLE solution, a batch solution for each recorded
trajectory is estimated. Comparisons are also made with trajectories that were
estimated by keeping a fixed-size sliding window to demonstrate the effects of the
window size on the quality of the solution. For all experiments the synchronous
part of the AAC method is run with a fixed window of 15 poses.

The visual measurements are obtained by first extracting salient corners in
the image where needed, to form landmarks. These landmarks are then tracked
in subsequent images by minimizing the reprojective appearance error in a 9x9
pixel support area around the corner, between the two images similar to [1].
If the appearance error is between a predefined threshold and the reprojective
constraints are not violated, the new position of the corner is added as a visual
measurement of the landmark. All examples were run by attempting to track
at most 128 landmarks. Keyframing was used as a means to increase the per-
formance of the optimization by adding parameters only when sufficient motion
was detected. This also alleviates problems arising from a stationary camera.
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Fig.4: A loop consisting of a 400m dataset taken on foot around the GWU
campus, superimposed over satellite imagery. The AAC optimization consists of
a fixed window of 15 keyframes plus an asynchronous adaptive window with a
minimum of 15 keyframes. The batch error as a percentage of traveled distance
is 1.33% while the AAC error is 1.42. For details on sub-figures (a), (b), and (c)
refer to Figure 3
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Fig. 5: Comparison of trajectories estimated by different bundle adjustment con-
figurations. It can be seen that the 25 long asynchronous fixed window BA and
the adaptive window BA both produce trajectories close to the batch solution,
however the 15 long fixed asynchronous fixed window BA diverges substantially
from the batch solution.

The first experimental setup consists of a person walking in different indoor
and outdoor environments. The first experiment within this setup was under-
taken indoors and consisted of a closed loop sequence along a corridor. The
trajectory length is approximately 80m. The resulting images and IMU data
were then processed with four different configurations of the solver: batch, two
different fixed windows (15 and 25 poses) and AAC. The results from the four
configurations run over the corridor sequence are shown in Figure 5. From these
results it can be observed that as the window size increases, the trajectory con-
verges to the batch solution, as expected. However, it can also be seen that the
adaptive mode, with an average window size of 33, matches the batch solution
closely without a predetermined window size.

Fig.6: (a) Autonomous vehicle used for data collection in this paper. (b) The
900m trajectory estimated by the adaptive asynchronous system superimposed
over aerial imagery.

Figures 3 and 4 show data obtained from running batch, AAC and fixed-
window optimziations on two separate datasets taken on foot around the GWU
campus. On both datasets, the AAC solution manages to adequately match
the batch solution. Results using a fixed window size show that an adaptive



solution is necessary to adequately approximate the batch solution. The subplots
depicting the ratio of the active window to the total number of keyframes denote
the initialization phase, where the AAC system pushes the optimization to batch,
if the initial parameter estimates such as velocity and orientation with respect
to gravity are mis-estimated. However after the initialization phase, the AAC
window size reaches a constant-time phase where only minor expansions are
required to keep an optimal estimate.

The experiments with the second platform were run using the autonomous
car depicted in Figure 6a. Images and IMU data were captured while driving
around the GWU campus in Washington D.C. The trajectory generated by our
adaptive method for a 900m segment of the data is shown in Figure 6b.

4 Experimental Insights

It was observed that in real-life situations, parameters such as velocity, gravity
and bias are observable with adaptive conditioning. This is of course contingent
upon sufficient excitation of the sensors. In the corridor dataset there is an ever
present oscillatory acceleration which quickly renders the unknown parameters
observable. Given this, we see a shorter required window size in order to closely
estimate the MLE solution. As expected window growth is also seen in situations
where scale and consequently velocity are ambiguous. An example of this is at
the ends of the corridor where sharp turns introduce a slew of uninitialized new
landmarks while simultaneously cutting tracks from established landmarks. The
net result is a scale ambiguity that requires a larger window size to resolve, which
is automatically discovered.

For data collected on the vehicle, scale was observable only over a large period
of time where significant accelerations were imparted on the vehicle for exam-
ple during turning. As such, a longer window was required in situations where
scale became ambiguous and especially for initialization where prior estimates
of velocity, biases and the gravity direction were not available.

When using asynchronous BA, care must be taken so as to ensure sufficient
update frequency of the asynchronous solution in order to ensure overlap with
the synchronous BA. This is required to keep the synchronous BA in the overall
solution basin as solved by the asynchronous BA. As expected from the relative
framework, the updates to the edges and inverse depth parameters for landmarks
are small and no interference was observed between the two threads.

Adaptive asynchronous conditioning (AAC) is a novel solution to real-time
visual-inertial SLAM. AAC is interesting because it automatically scales and
focuses computation to capture the full MLE solution, and avoids the downsides
associated with marginalization, such as incorrect linearization and inconsis-
tency. Further, AAC avoids the computational difficulties associated with car-
rying prior distributions, such as the need to compute global optimizations at
loop closure.

The proposed method offers a natural “front-end” while simultaneously al-
lowing larger portions of the problem to influence the solution. It is thus able



to produce estimates in real-time, and also capture functional-constraints that
are only observable over long periods of time — an ability which is useful for
self calibration, during degenerate motions, or when bias and gravity are poorly
observed.
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